Linear Analysis of Quadrature Domains. IV
نویسندگان
چکیده
The positive definiteness of the exponential transform of a planar domain is proved by elementary means. This direct approach avoids the heavy machinery of the theory of hyponormal operators and leads to a better understanding of the linear data associated in previous works to a quadrature domain. Version: September 10, 2003. 1. The exponential transform Let Ω be a bounded open subset of the complex plane and let dA stand for the Lebesgue planar measure. The exponential transform of the set Ω is the function: (1.1) EΩ(z, w) = exp[− 1 π ∫ Ω dA(ζ) (ζ − z)(ζ − w) ]. The integral is convergent for all values of z, w ∈ C avoiding the diagonal ∆ = {(z, w); z = w ∈ Ω}. In case (z, w) ∈ ∆ and the integral is divergent (necessarily to infinity) we adopt the convention exp(−∞) = 0. Thus EΩ(z, w) is defined everywhere on C and one proves that the resulting function is uniformly bounded and separately continuous in each variable, see [10]. We shall occasionally use the notation (1.1) also when the set Ω is not open. The above exponential transform has appeared in operator theory as a determining function for a class of hyponormal operators ([18], [20], [2], [3], [4]). Later it was analyzed in purely function theoretic terms and was used in proving the regularity of certain free boundaries ([10]) or in image reconstruction ([8]). More Received by the editors today. 1991 Mathematics Subject Classification. Primary 65D32; Secondary 47B20, 31A10.
منابع مشابه
Free vibration analysis of functionally graded rectangular plates via differential quadrature method
In this study, free vibration of functionally graded rectangular plates for various types of boundary conditions has been presented . The properties of the plate are assumed as power- law form along the thickness direction , while poisson's ratio is kept constant. the linear vibration equations of functionally graded rectangular plates are derived based on first order shear deformation theory b...
متن کاملInvestigation of Linear and Nonlinear Buckling of Orthotropic Graphene Sheets with Nonlocal Elasticity Theories
In this paper, analysis of linear and nonlinear buckling of relatively thick orthotropic graphene sheets is carried out under mechanical load based on elasticity theories. With the help of nonlocal elasticity theory, the principle of virtual work, first order shear theory and Von-Karman nonlinear strain, the dominant relationship in terms of obtained displacements has been obtained, and the me...
متن کاملA Generalized Convolution Quadrature with Variable Time Stepping
In this paper, we will present a generalized convolution quadrature for solving linear parabolic and hyperbolic evolution equations. The original convolution quadrature method by Lubich works very nicely for equidistant time steps while the generalization of the method and its analysis to non-uniform time stepping is by no means obvious. We will introduce the generalized convolution quadrature ...
متن کاملEffect of thermoelastic damping in nonlinear beam model of MEMS resonators by differential quadrature method
This paper presents a nonlinear model of a clamped-clamped microbeam actuated by an electrostatic load with stretching and thermoelastic effects. The frequency of free vibration is calculated by discretization based on the Differential Quadrature (DQ) Method. The frequency is a complex value due to the thermoelastic effect that dissipates energy. By separating the real and imaginary parts of fr...
متن کاملNumerical Simulation of 1D Linear Telegraph Equation With Variable Coefficients Using Meshless Local Radial Point Interpolation (MLRPI)
In the current work, we implement the meshless local radial point interpolation (MLRPI) method to find numerical solution of one-dimensional linear telegraph equations with variable coefficients. The MLRPI method, as a meshless technique, does not require any background integration cells and all integrations are carried out locally over small quadrature domains of regular shapes, such as lines ...
متن کاملar X iv : m at h - ph / 0 51 00 70 v 1 1 9 O ct 2 00 5 The Variable Coefficient Hele - Shaw Problem , Integrability and Quadrature Identities
The theory of quadrature domains for harmonic functions and the Hele-Shaw problem of the fluid dynamics are related subjects of the complex variables and mathematical physics. We present results generalizing the above subjects for elliptic PDEs with variable coefficients, emerging in a class of the free-boundary problems for viscous flows in non-homogeneous media. Such flows posses an infinite ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003